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SUMMARY

A Hermitian–Fourier numerical method for solving the Navier–Stokes equations with one non-homo-
geneous direction had been presented by Schiestel and Viazzo (Internat. J. Comput. Fluids 1995;
24(6):739). In the present paper, an extension of the method is devised for solving problems with two
non-homogeneous directions. This extension is indeed not trivial since new algorithms will be necessary,
in particular for pressure calculation. The method uses Hermitian �nite di�erences in the non-periodic
directions whereas Fourier pseudo-spectral developments are used in the remaining periodic direction.
Pressure–velocity coupling is solved by a simpli�ed Poisson equation for the pressure correction using
direct method of solution that preserves Hermitian accuracy for pressure. The turbulent �ow after
a backward facing step has been used as a test case to show the capabilities of the method. The
applications in view are mainly concerning the numerical simulation of turbulent and transitional �ows.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We present a numerical method for solving the three-dimensional unsteady Navier–Stokes
equations written in primitive variables for an incompressible �uid, devised for applications
to large eddy simulations of turbulent �ows. The basic concepts were originally developed
by Schiestel and Viazzo [1] and applied to compute �ows involving two directions with
periodic boundary conditions and a third one with non-periodic boundary conditions. The new
extension proposed here enables to deal with more complex situations and especially �ows
involving two non-homogeneous directions, thus enlarging the �eld of applications. Indeed,
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most applications of practical interest imply at least two non-homogeneous directions. This
is the case for instance for numerous developing �ows that are two-dimensional in the mean
such as jets and boundary layer �ows. This extension developed in the present work is not
just an outgrowth of the Schiestel and Viazzo [1] method, but it embodies several important
new aspects corresponding to a di�erent computer code.
Hermitian methods and compact schemes, �rst introduced by Krause [2] and Hirsch [3]

have been applied to �uid �ow problems by several authors [4–7]. They produce high ac-
curacy �nite di�erence schemes that in practice can almost compete with spectral methods
[8]. Recently, compact di�erencing approximations have been applied to DNS and LES. In
particular, applications of such methods for simulation of turbulence are reported by Kral and
Zang [9], Guo and Adams [10] and Schiestel and Viazzo [1].
In the �rst part, we give a detailed description of the numerical method. The space dis-

cretization makes use of a staggered grid and the derivatives are evaluated using fourth-order
Hermitian relations in the two inhomogeneous directions and Fourier polynomial expansions
in the third one which is homogeneous. The time advancement is based on an iterative split-
ting scheme. The Hermitian Poisson equation for pressure is replaced by its �nite di�erence
analogue and is solved using a diagonalization technique. This is one of the main new in-
gredients of the method proposed here. Thanks to the secondary internal iterative process,
the fourth-order accuracy of the numerical scheme is recovered for pressure and velocities.
Thus, the numerical method guaranties good conservation properties and high accuracy that
are required for meaningful large eddy simulations.
The second part is devoted to validation test cases. We �rst verify the accuracy of the

proposed method by means of comparisons between analytical and numerical solutions of the
Navier–Stokes equations. The method is then applied to the computation of two-dimensional
laminar �ow over a backward facing step for Reynolds numbers ranging from Re=50 up to
500 and the results are compared with experimental and numerical results.
In the last part of this paper, in order to demonstrate the e�ciency of the method for

numerical simulation of turbulence, we present two di�erent applications to turbulent backward
facing step �ows using Large Eddy Simulation. The method is applied to the �ltered Navier–
Stokes equations, and the subgrid scales are modelled with a Smagorinsky eddy viscosity
model. The �rst simulation is a fully turbulent �ow in a channel with a sudden expansion at
Re=27600. In a second simulation we also consider the turbulent �ow in an open channel
with a small step at Re=13800.

2. NUMERICAL METHOD

2.1. Navier–Stokes equations

We consider the �ow of an incompressible newtonian �uid with density � and viscosity � in
a �xed reference frame (Oxyz). The �uid domain, �⊂R3, is in�nite and periodic along the
spanwise direction (Oy), while in the two other directions (x and z) the domain is bounded
by the surface @�.
Using Uref and Lref to denote velocity and length scales, the velocities are normalized by

Uref and the pressure is normalized by �U 2
ref . The dimensionless equations of motion written in

primitive variables (velocity U=(u; v; w) and pressure p) are the well-known Navier–Stokes
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INCOMPRESSIBLE FLUID TURBULENCE SIMULATIONS 1157

equations:

@U
@t
=−U · ∇U −∇p+ 1

Re
�U (1)

together with the continuity equation:

∇ ·U=0 (2)

where the parameter Re is the Reynolds number de�ned by Re=UrefLref =�.
In the spanwise direction, the �ow is considered as homogeneous, hence periodic boundary

conditions can be used. In the two inhomogeneous directions, the velocity components are
usually set to speci�ed values, depending on the problem under consideration: zero (no-
slip condition) on the solid boundaries, and any other value, assumed to be known, for
in�ow and out�ow boundaries. At the exit boundary, however, di�erent types of boundary
conditions can be used depending on the particular application, such as given pressure and
zero transverse components of velocity. If all the velocity components are given, they must
satisfy the compatibility condition: ∫

@�
(U · n) dS=0 (3)

where n is the unit normal vector on the boundary. If the pressure is �xed together with
the v and w-velocity components, then the longitudinal u-component can be recovered from
continuity (2). In the present method, the Navier–Stokes equations will be written in the
skew-symmetric form recommended by Zang [11]:

@U
@t
=−1

2
U · ∇U − 1

2
∇(U ·U)−∇p+ 1

Re
�U (4)

along with the continuity equation (2). Indeed, the skew-symmetric form proved to possess
nice conservation properties, even on shifted grids [12, 1]

2.2. Space discretization

The computational domain (Figure 1) is a rectangular box extending from x=0 to Lx in the
main �ow direction (Ox); y=0–Ly in the spanwise direction (Oy) and from z=0 to Lz in
the vertical direction (Oz). The numbers of discretization points are, respectively, Nx; Ny and
Nz in the x; y and z directions and �X; �Y; �Z stand for the corresponding grid spacings.
The space discretization makes use of a staggered mesh (a MAC type mesh) which prevents

pressure checkerboarding to occur. It also avoids the need of complex appropriate boundary
conditions for pressure [4]: velocity components u; v; w are, respectively, located at nodes
((i+ 1

2)�X; j�Y; k�Z); (i�X; ( j+
1
2)�Y; k�Z) and (i�X; j�Y; (k+

1
2)�Z) while pressure

nodes are located at (i�X; j�Y; k�Z), see Figures 2 and 3. Then the staggered velocities
will be denoted U=(u

i+12 ; j; k
; v
i; j+12 ; k

; w
i; j; k+12

), whereas the pressure remains located at nodes
p=pi; j; k .
In the two inhomogeneous directions �rst- and second-order derivatives are given by Hermi-

tian relations (fourth-order accurate) recalled in Appendix A. Hermitian relations for �rst-order
derivatives lead to tridiagonal systems that are solved using the Thomas algorithm. Hermitian
relations for second-order derivatives are explicit.
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Figure 1. Sketch of the �uid �ow domain.

Figure 2. Staggered arrangement for interior grid points of the mesh.

We also introduce a variable change to allow local mesh re�nements. If � denotes the X or
Z co-ordinate on a regular transformed mesh, while � denotes the x or z physical co-ordinate,
the �= �(�) function is supposed to be de�ned analytically (see Appendix C).
Derivatives are then evaluated in the transformed co-ordinate system (X; Z) and true deriva-

tives with respect to (x; z) are obtained by

@f
@�
= g�

@f
@�

and
@2f
@�2

= g2�
@2f
@�2

+ h�
@f
@�

(5)

with

gx=
d�
d�

and h�=
d2�
d�2

These changes do not lead to strong local truncation errors as long as the step variation is
smooth [13].
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Figure 3. Arrangement of grid points at the boundaries in the (x; z) plane.

In the spanwise direction, interpolations, �rst- and second-order derivatives are based on
Fourier polynomial expansions. The method is developed in physical space using pseudo-
spectral formalism.

2.3. Time advancement

The time integration is based on a second-order accurate Adams-Bashforth=Crank–Nicolson
time scheme. Only the �2��f type contributions (see Equation (A7)) in the di�usion terms are
included in the Crank–Nicolson scheme and thus treated implicitly. All the remaining terms,
except the pressure term which is considered separately, are included in the Adam–Bashforth
part of the scheme denoted by H. The H term includes in particular the convective terms,
the �rst-order derivatives stemming from variable changes, the terms �� in Equation (A7),
together with the second derivatives in the y direction:

H= 1
2(∇U ·U+U · ∇U) +A

where A denotes the di�usive terms that are not included in the Crank–Nicolson part.
The discrete momentum equations are then

1
�t
(Un+1 −Un) = �n; n−1 −Gpn+1 + 1

2Re
L(Un+1 +Un) (6)

with

D ·Un+1 =0 (7)

where G denotes the approximation of the gradient operator, D the approximation of the
divergence operator (Hermitian approximation in x and z and Fourier approximation in y)
and L is the discrete second-order Laplacian in the (x; z) plane. The superscripts n and n+1
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are referring to values at times n�t and (n+1)�t. The system that has to be solved at each
time step is now rewritten in the form

1
�t
(Un+1 −Un) =−1

2
(3Hn −Hn−1)−Gpn+1

+
1
2Re

(g2X �
2
XX + g

2
Z�
2
ZZ)(U

n+1 +Un) (8)

These momentum equations are solved on the velocity nodes and the divergence free constraint
is enforced at pressure nodes.

2.4. Solution technique

2.4.1. Splitting scheme. The solution of the former system makes use of a fractional step
technique [1] which consists in splitting the time advancement in two steps. In the �rst step,
an approximation of the velocity �eld is computed which is not divergence-free because it
does not satisfy the incompressibility constraint:

1
�t
(Û −Un)=Hn; n−1 −Gpn + 1

2Re
L(Û+Un) (9)

in the second step the velocity vector is corrected by an additive gradient term in order to
recover Equation (6):

1
�t
(Un+1 − Û)=−G	 (10)

Taking the divergence of Equation (10) and setting D ·Un+1 =0, gives the Poisson equation
for 	:

D ·G�= 1
�t
D · Û (11)

Then, from Equations (9) and (10), by comparison with Equation (6) the pressure is updated:

pn+1 = pn +�+
�t
2Re

L�

In fact, due to the rather complicated expression of the D ·G operator, the procedure described
above has been modi�ed to proceed by internal iterations. The time advancement is thus
achieved through an iterative fractional step technique [1]. At the internal iteration m, an
approximation Un+1; m of Un+1 is deduced from the momentum equation using the values of
pressure and velocities at the previous internal iteration:

1
�t
(Un+1; m −Un)=�n; n−1 −Gpn+1; m−1 + 1

2Re
L(Un+1; m−1 +Un) (12)

In a second step the velocity �eld is corrected by

Un+1; m+1 =Un+1; m −�tG	 (13)
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and �nally the pressure �eld at the new internal iteration m+ 1 is obtained by

pn+1; m+1 =pn+1; m +	 (14)

The correction 	 is solution of the Poisson equation:

D ·G	= 1
�t
D ·Un+1; m (15)

The major di�erence from Equation (11) is that when the internal iteration process is con-
verged the solution of (15) is always 	 = 0. So, it is now permissible to replace the Hermitian
approximation of the Laplacian in the left-hand side by the central di�erence approximation
which is much simpler. After one internal iteration the new velocity �eld is still not diver-
gence free and others internal iterations are required to get better approximation of U. These
operations are repeated until the divergence of the velocity �eld becomes less than a speci�ed
value. From a practical point of view, the convergence criterion for this internal iteration
procedure is considered to be reached when the relative residuals verify:

max
[
D ·Un+1; m
Un+1; mmax

;
|Un+1; m+1 −Un+1; m|

Un+1; mmax

]
6� (16)

The parameter � which characterizes the precision of the computation is chosen equal to 10−6

for all the applications considered in the following:
For the �rst internal iteration, at each time step, we take

Un+1;0 =Un; Pn+1;0 =Pn (17)

When the convergence is reached, at the internal iteration M , we have

D ·Un+1;M =0; 	=0

and

Un+1 =Un+1;M ; Pn+1 =Pn+1;M

The discrete Poisson equation for pressure, obtained from the two derivatives on staggered
grid nodes reads:

gX; i
�X 2

{g
X; i−1+ 12

	i−1; j; k − (gX; i−1+ 12
+ g

X; i+12
)	i; j; k + gX; i+12

	i+1; j; k}

+
gZ; k
�Z2

{g
Z; k−1+ 12

	i; j; k−1 − (gZ; k−1+ 12
+ g

Z; k+12
)	i; j; k + gZ; k+12

	i; j; k+1}

+d2Y	i; j; k =
1
�t
D ·Un+1; mi; j; k (18)

where d2y is the approximation of second-order derivative in the spanwise direction.
We write it in a more convenient way

(�2xx + �
2
zz + d

2
y)	=

1
�t
D ·Un+1; m (19)
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This procedure preserves the overall fourth-order accuracy of the numerical scheme although
the Poisson equation for pressure correction is only second-order accurate. Indeed, the velocity
divergence in the right-hand side of (19) is still an Hermitian discretization.

2.4.2. Compatibility condition. Assuming that the velocity components are given on the
boundaries, the corresponding conditions for the pressure correction are homogeneous Neu-
mann conditions. Writing @� for the bounding surface of the computational domain � and n
for the normal unit vector to @�, this condition reads

@�
@n

∣∣∣∣
@�
=0 (20)

However, they must be written as central di�erences:

	1; k =	2; k ; 	Nx; k =	Nx−1; k ; 	i;1 =	i;2; 	i; Nz = 	i; Nz−1

Integration of Equation (19) leads to the velocity compatibility condition:

1
�t

∫
@�
U · n=

∫
@�
G� · n=0 (21)

re�ecting the overall mass conservation on the domain. To ensure this property in the discrete
sense, some minor adjustments in the discrete Laplacian are necessary (see Appendix B).
Considering the previous remarks, these adjustments do not destroy the fourth-order accuracy
of the method.

2.4.3. Diagonalization technique. Equation (19) has been solved using direct method. The
bene�t of direct methods over iterative methods of solution is decisive in particular with
respect to computational time. This is a major addition made in the present extension of the
method already presented in Reference [1]. This direct approach proved to be very interesting
because of its several practical advantages. First of all, memory requirements are very limited,
due to the fact that the technique only involves two-dimensional arrays. Also, the operators
can be calculated in the preamble stage of the computer code, out of the main loops, saving
lot of time. Taking the Fourier transform TF , of Equation (19) gives the following set of
Helmholtz equations:

(�2xx + �
2
zz − k2y )TFy(�)=TFy

(
1
�t
D ·Un+1; m

)
(22)

For each wave number ky we write it in the following matrix form:

D2xx�+�D
2T
zz − k2y�=S (23)

where � is a (Nx − 2)× (Nz − 2) matrix of unknowns 	i; k(i=2; Nx − 1; k=2; Nz − 1);D2xx
and D2zz are tridiagonal matrices of dimensions (Nx − 2)× (Nx − 2) and (Nz − 2)× (Nz − 2)
including the boundary conditions.
This equation is solved using a diagonalization technique [14–16] which expresses D2xx and

D2zz in terms of products:

D2xx=Px�xP
−1
x and D2zz=Pz�zP

−1
z
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where �x=diag(�x;1; �x;2; : : : ; �x;NX−2) and 
Z =diag(�z;1; �z;2; : : : ; �z;NZ−2) are diagonal matrices
composed of the eigenvalues of D2xx and D2zz. The matrices Px and Pz are built on their
corresponding eigenvectors. Both matrices D2xx and D2zz are diagonalizable for they can be
written as the products of a diagonal and a tridiagonal symmetric (hence diagonalizable)
matrix [17].
Writing �̃=P−1

x � and S̃=P−1
x S, Equation (23) gives �x�̃+�̃D2zz

T−k2y�̃= S̃ Again setting
��= �̃P−1T

z and �S= S̃P−1T
z , it turns that 
x ��+ ��
z − k2y ��= �S which yields:

��i; k =
�Si; k

�xi + �zk − k2y
(24)

The values of � are �nally deduced from the relation 	=Px	̃=Px �	PTz .
When Neumann boundary conditions are used for 	, both D2xx and D2zz matrices are singular

(they have a zero eigenvalue �x; i0 = 0 and �z; k0 = 0). In the particular case where ky=0, this
singularity prevents to get the solution of Equation (22). In fact, there is an in�nite number
of solutions, because the pressure �eld is de�ned within an additive constant. The method
retained here, which is a consequence of the velocity compatibility condition, consists in
setting �	i0 ; k0 = 0, if �Si0 ; k0 = 0. Since D2xx and D2zz are only space dependent, the calculation of
their eigenvalues and eigenvectors is needed once for all, before starting the whole iteration
process. At each time step, the solution of the Poisson equation will be reduced to four matrix
products for each wave number.
An interesting alternative of this diagonalization method would be to solve Equation (15)

keeping fourth-order discretization in the left-hand side. Heavier calculation results from this
practice, but secondary iterations can be avoided (see, Reference [16]).

3. NUMERICAL TESTS OF THE NAVIER–STOKES SOLVER

3.1. Preliminary tests of the Poisson equation solution

The method of solution of the Poisson equation for the pressure correction is checked by
comparison of the numerical solution with an exact analytical solution in two dimensions.
First a Neumann problem is de�ned by

��=S in �= {−16x61;−16z61}
with the boundary conditions: @�=@x(± 1; z)=0 and @�=@z(x;± 1)=0.
A second problem of mixed type is de�ned by

��= S in �= {−16x61;−16z61}
with the boundary conditions: @�=@x(+1; z)=0; @�=@z(x;±1)=0 and �(−1; z)=1=2	3[ 12 cos
(2	z) + 2 cos(	z)].
In both cases the right-hand side of the equation is given by

S(x; z)=
1
2	
cos(	x)

[
5
2
cos(2	z) + 4 cos(	z)

]
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and an analytical solution for the two previous problems is given by the function:

�analyt(x; z)=− 1
2	3

cos(	x)
[
1
2
cos(2	z) + 2 cos(	z)

]

In order to verify the validity of the method, the maximal errors and the mean errors of
the numerical solution in comparison with the analytical solution are calculated on the inner
nodes.

Mean quadradic error:

(
1

(Nx − 2)(Nz − 2)
Nx−1; Nz−1∑
i=2; k=2

(
− 
a)2i; k
)1=2

Maximum error: max
i=2; Nx−1
k=2; Nz−1

|(
− 
a)i; k |

The tests are made for several di�erent meshes with the same number of discretization points
in the two directions x and z, for uniform meshes and for non-uniform meshes. These results
presented in Figures 4(a) and 4(b) versus the space step h=�X =�Z show that the errors
thus obtained are of the order O(h2) in every case. It is also veri�ed that when Neumann
boundary conditions are used, the numerical solution is indeed the solution whose mean value
is zero.

3.2. Test of the Navier–Stokes solver against a two-dimensional steady analytical solution

In order to check the accuracy of the numerical scheme, we compare the numerical results U =
(u; w) and p to the analytical values Ua = (ua; wa) and pa. Their dimensionless expressions,
based upon Uref =Umax; Umax being the maximum velocity in the in�ow plane and Lref =Lz=2,
the half-width of the channel, are given by

ua = (1− z2)(1− ze−x); wa= 14(1− z
2)2e−x and pa=− 2x

Re
(25)

which are the solutions of the NS equations in which an adequate forcing term F=(fx; fz) is
added. The forcing term can be easily deduced analytically from the knowledge of velocity
components and pressure (Equation (25)):

fx =
1
4
(1− z2)2e−x[2z − z2e−x − e−x]− 1

Re
[−z(1− z2)e−x − 2 + 6ze−x]− 2

Re

fz =−1
4
(1− z2)3e−x − 1

Re

[
1
4
(1− z2)2 + 3z2 − 1

]
ze−x

(26)

The considered equation is thus

@U
@t
=−U · ∇U −∇p+ 1

Re
�U+ F (27)

The computational domain is Lz=2 high and Lx=10 long (in dimensionless quantities).
The following boundary conditions are set at the in�ow section: u= ua; w=wa with the
condition for 
: @
=@x=0. No-slip boundary conditions for both u and w, are used at the walls:
u=0; w=0 and the corresponding condition for 
 is again @
=@z=0. For the out�ow section,
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(a)

(b)

Figure 4. In�uence of grid size on the accuracy of the numerical solution of the Poisson equation using
centred di�erences. (a) Mixed boundary conditions and (b) Neumann boundary conditions.

we set @w=@x=0 and p=0; u being extrapolated to ful�l the continuity equation and 
 is
equal to zero. For this, the continuity equation gx@u=@X+gz@w=@Z =0 is written at the node
(Nx − 1; k) taking into account the Hermitian relations for derivatives on staggered mesh:

u
Nx−1+ 12 ; k

=�x

[
−23 gz(k); k

gx(i); Nx−1

(
@w
@Z

)
Nx−1; k

+
(
@u
@X

)
Nx; k

]
+ 26u

Nx−2+ 12 ; k
− u

Nx−3+ 12 ; k
(28)

The initial conditions are given by

u= ua(x=0)= (1− z2)(1− z)
w=wa(x=0)= 1

4(1− z2)2 and p=0

The grids are tightened in the two directions x and z, the stretching parameters being aX =0:9
and aZ =0:9 and then the space step is varied in order to determine the precision of the
numerical scheme. The comparisons are carried out for several mesh sizes, using the same
variable changes (re�nement near the in�ow plane and near the walls) in each case and the
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Figure 5. In�uence of grid size on the precision of the numerical solution of the
two-dimensional Navier–Stokes equations on variable mesh. (a) Square mean val-
ues of errors and (b) maximum of errors. Centred second-order di�erences: © (u),

©· (w), • (p); Hermitian fourth-order scheme: (u), � (w), � (p).

same number of grid points in both directions x and z. For each variable, we compute the
mean and maximum errors (at the interior grid points) of the numerical solution relatively to
the analytical solution:

The mean quadratic error Q(u)=

(
1

(Nx − 2)(Nz − 2)
Nx−1; Nz−1∑
i=2; k=2

(u− ua)2i; k
)1
2

(29)

The maximum error M (u)= max
i=2; Nz−1
k=2; Nz−1

|(u− ua)i; k | (30)

The results are reported in Figures 5 and 6 (maximum errors and mean quadratic errors)
and are also compared to the values obtained with a centred di�erence scheme (second-order
accurate).
The results in Figure 5(a) present the mean quadratic errors for u; w and p versus the

space step �x: the measured slopes are, respectively, 4.4, 4.4 and 4.1. Figure 5(b) presents
the maximum errors and the slopes are, respectively, 3.3, 3.1 and 3.2. These �gures show that
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(a)

(b)

Figure 6. In�uence of grid size on the precision of the numerical solution of the
two-dimensional Navier–Stokes equations on uniform mesh. (a) Square mean values

of errors and (b) maximum of errors (symbols: see Figure 5).

the whole scheme is indeed fourth-order accurate and that hermitian relations are much better
than second-order centred di�erences. The loss of accuracy araising on the maximum errors,
which are always located at the boundaries, can be explained by the third-order approximation
of the boundary relations.
Some results are presented in Figure 6 for a uniform mesh. The slopes of the mean quadratic

errors for u; w and p are, respectively, 4.7, 4.2 and 4.3, whereas the maximum errors are,
respectively, 3.4, 2.8 and 2.5. So, the variable mesh does not damage signi�cantly the accuracy
of the numerical scheme. In practice, less than 10 internal iterations are necessary to reach a
10−14 maximum error on the velocity divergence.
Figure 7 displays the streamwise and vertical velocity components at various locations

(using variable mesh with Nx=Nz=96).

3.3. Laminar �ow over a backward facing step

We consider the two-dimensional �ow in a channel with a sudden expansion (Figure 8).
Velocity and length scales of reference are, respectively, the bulk velocity in the in�ow section
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(a)

(b)

Figure 7. Comparison between numerical solution and analytical solution of the two-dimensional
Navier–Stokes equations on a 96×96 mesh using Hermitian schemes. (a) u-velocity component and (b)
w-velocity component. Lines: analytical solution, Symbols: numerical solution (−−−−, �: x=h=0:0;

- - - - -, �: x=h=0:43; - - - -, : x=h=0:84; - - - �: x=h=1:71).

Figure 8. Sketch of the backward facing step �ow in a channel.

Ubulk and the step height h. The channel length is Lx=30 h and its height is
Lz=2 h.
This �ow has been chosen as a typical reference case for testing the proposed method, con-

sidering that several experimental and numerical data are available in the scienti�c literature.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1155–1188



INCOMPRESSIBLE FLUID TURBULENCE SIMULATIONS 1169

Table I. Bidimensional �ow past a backward facing step.

Initial Exit
Case No. Reh condit. Nx × Nz Scheme b.c. xr2 =h xs1 =h xs2 =h

1 50 Channel 48× 32 H N 3.3 — —
2 100 1 48× 32 H N 5.4 — —
3 150 2 48× 32 H N 7.1 — —
4 200 3 64× 48 H N 8.6 8.1 9.1
5 250 4 64× 48 H N 9.4 8.3 13.1
6 300 5 96× 72 H N 10.5 8.6 16.0
7 350 6 96× 72 H N 11.5 8.9 19.0
8 400 7 96× 72 H N 12.2 9.5 21.5
9 450 8 128× 96 H N 12.9 10. 23.5
10 500 9 128× 96 H N 13.5 10.8 25.5
11 50 Channel 48× 32 C N 3.1 — —
12 100 11 48× 32 C N 5.2 — —
13 150 12 48× 32 C N 7.1 — —
14 200 13 64× 48 C N 8.8 — —
15 250 14 64× 48 C N 9.9 6.1 13.1
16 300 15 96× 72 C N 10.1 7.4 18.2
17 350 16 96× 72 C N 11.6 8.3 21.8
18 400 17 96× 72 C N 12.3 8.4 25.5
19 450 8 128×96 H C 12.5 9.5 22.2
20 500 9 128×96 H C 13.2 10.0 26.4

Note: Scheme: H, fourth-order Hermitian; C, second-order centred and
Exit b.c.: N, zero gradient; C,convective condition.

The in�ow boundary conditions are:

u=6z(1− z) for 06z6+ 1

u=0 for − 16z60

and

w=0 for − 16z6+ 1

The corresponding condition for the pressure correction is @
=@x=0. For the out�ow section
we put: @w=@x=0 and p=0, the streamwise velocity component being extrapolated in order
to ful�l the continuity equation. A no-slip boundary condition is used at the walls: u=w=0
for z=±1 and again the corresponding condition for pressure correction is @
=@z=0.
So, the computations are carried out for several Reynolds numbers ranging from Re=50

to 500. In each case, the mesh is re�ned close to the inlet section and near the walls, using
the same kind of variable change as in the previous test case (see Appendix C). Table I
summarizes the di�erent cases, specifying in particular the mesh size and location of recircu-
lating bubbles. The de�nitions of reattachment lengths and separation lengths xr2=h; xs1=h; xs2=h
are given on Figure 8.
The reattachment lengths on the bottom wall are reported in Figure 9. Figure 10 displays

the secondary separation and reattachment lengths on the top wall.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1155–1188



1170 E. VEDY, S. VIAZZO AND R. SCHIESTEL

Figure 9. Main reattachment length versus Reynolds number in the laminar two-dimensional step �ow in
a channel. ◦, centred di�erences, and zero gradient exit boundary condition; , Hermitian schemes, and
zero gradient exit boundary condition; �, Hermitian schemes, and convective exit boundary condition;

�, experiments, Armaly et al. (1983) [18]; ∇, numerical simulation, Le and Moin (1994) [19].

These results are compared to the experimental results of Armaly et al. [18] and to the
numerical computations of Le and Moin [19]. A good agreement for the main reattachment
length in Figure 9 is found up to Re=250 where some discrepancies appear between the
numerical results and the experimental results. This is due to the development of three-
dimensional e�ects in the experiments. The prediction of reattachment on the upper wall
(Figure 10) is more subtle. Compared to the experiments, the fourth-order scheme shows
improvement over the second-order scheme. Figure 11 displays some streamlines patterns
for di�erent Reynolds numbers (ranging from 100 to 500) together with the pressure levels.
Between Re=150 and 200, we clearly observe a second recirculation bubble that begins to
grow on the upper wall, as reported in Armaly for Re=150.
Two other computations have been carried out (for Re=450 and 500), using di�erent

out�ow boundary conditions. In these latter cases u and w are imposed using convective
conditions

@u
@t
=−u@u

@x
;
@w
@t
=−u@w

@x

and

@p
@x
=0 for the pressure correction
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Figure 10. Reattachment length and separation at the upper wall versus Reynolds
number in the laminar two-dimensional step �ow in a channel. ◦, xs1=h for centred
di�erences, zero gradient exit boundary conditions; •, xs2=h for centred di�erences,
zero gradient exit boundary conditions; , xs1=h for Hermitian schemes, zero gra-
dient exit boundary conditions; �, xs2=h for Hermitian schemes, zero gradient exit
boundary conditions; �, xs1=h for Hermitian schemes, convective exit boundary con-
ditions; �, xs2=h for Hermitian schemes, convective exit boundary conditions and

�;N, experiment, Armaly et al. (1983) [18].

The results are reported in Figure 12 for Re=500 in order to show that if the outlet section
is located su�ciently far from the recirculating zone, then there is no practical di�erence.

4. LARGE EDDY SIMULATION OF TURBULENT RECIRCULATING FLOW

4.1. Filtered NS equations

De�ning the �ltered value �f of a turbulent quantity f by

f(x′; y′; z′)=
∫
f(x; y; z)G(x; y; z; x′; y′; z′) dx dy dz (31)

The quantity G standing for a �lter function depending on the mesh size, each �ow variable
can be split into an explicit grid scale contribution, the �ltered quantity, and an implicit
subgrid scale contribution. Thus, we write

U= �U+U′ and p= �p+ p′ (32)
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(a1)

(b1)

(a2)

(a3)

(b3)

(b4)

(a4)

(a5)

(b5)

(b2)

Figure 11. Streamlines and pressure contours in the laminar step �ow in a channel, for several Reynolds
numbers using zero derivative exit boundary conditions. (a) Streamlines and (b) isopressure contours.

(1) Reh=100, (2) Reh=200, (3) Reh=300, (4) Reh=400, (5) Reh=500.

Applying this �ltering operation to the NS equations, we get the so-called �ltered Navier–
Stokes equations (see e.g. Reference [20]):

@ �U
@t
=−1

2
[ �U · ∇ �U+∇( �U · �U)]−∇ �P +

1
Re
� �U −∇T−∇L (33)
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(a)

(b)

Figure 12. Streamlines and pressure contours in the laminar step �ow in a channel, for Reynolds number
500 using convective exit boundary conditions.

along with the �ltered continuity equation:

∇ · �U=0 (34)

where T=R − 2
3 kI with k= trace(R) and I=unity tensor.

The tensor T is the deviatoric part of the subgrid scale Reynolds stress tensor de�ned by

R=U′ ⊗ �U+ �U⊗U′ +U′ ⊗U′ (35)

and �P is the �ltered modi�ed pressure including the subgrid scale kinetic energy of turbulence:

�P=
�p
�
+
2
3
k (36)

The cross terms in the R tensor contain both small-scale=small-scale interactions and small-
scale=large-scale interactions. Since these terms are unknown, they have to be modelled.
The term L is the Leonard stress de�ned by:

L= �U · �U − �U · �U (37)

Actually, a Gaussian �lter is used in the spanwise direction whereas there is no explicit
�ltering operation in the two inhomogeneous directions (x and z), but the numerical scheme
indeed implicitly �lters in these directions.

4.2. Subgrid model

We use a Smagorinsky eddy viscosity model modi�ed in the viscous sublayer in order to
take into account the e�ect of Reynolds number like in Reference [21] which expresses the
deviatoric stress tensor T with the local strain rate tensor S:

T=−2�tS with S= 1
2(∇ �U+∇ �UT) (38)

where �t is the subgrid viscosity de�ned by

�t =



�touter = (CSl)

2(2S2)1=2 for dwall¿dp

�tinner =C2
l4

�
(2S2) for dwall¡dp

(39)

The term dwall denotes to the distance from the nearest wall, dp being the distance at which
〈�tinner 〉Y¿〈�touter 〉Y .
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The length scale, l, is given by

l=(min(�x; l′)min(�z; l′)min(2�y; l′))1=3 (40)

with l′=0:1 for dwall¿0:1 and l′=Kdwall for dwall¡0:1 and Cs and C2 are two constants
given by Cs=0:2 and C2 =C2S =27K; K being the Von Karman constant K =0:41.
More advanced models such as spectral-dynamic models [22] could be implemented in the

numerical procedure.
The method is now applied to the case of the backward facing step �ow in a channel or in

a boundary layer in turbulent regime. These are typical test �ows that are well documented
in the scienti�c literature and representative of many usual situations encountered in real
applications. The present aim is not a physical study of the �ow structures. For this reason,
the inlet channel �ow upstream the step has not been considered in the calculation. The
same practice has been followed in Reference [23] using a �nite volume code with third-
order accuracy. Indeed, considering that this �ow is very sensitive to the in�ow conditions,
it would be necessary to incorporate the inlet channel �ow (see Reference [24]) into the
simulation in order to get a more detailed physical analysis of the �ow.
The work of Neto et al. [23] on the step �ow problem in a channel for a di�erent Reynolds

number than the one considered in the present work, is mainly devoted to physical and
structural analysis using, among others, the structure function subgrid scale model. In the
case of a step �ow in a boundary layer, the DNS of Le et al. [29] gives detailed physical
insight.
The present work focusses on numerical aspects and these test cases are used mainly to

illustrate the capabilities of the numerical method. In this respect, let us emphasize that up
to now, the diagonalization technique implemented in the present method, has seldom been
used in LES calculations.

4.3. Sudden expansion in plane channel �ow

We consider the turbulent �ow in a channel with a sudden expansion (Figure 8).
Velocities are non-dimensioned with the maximum velocity Um in the in�ow section and

the characteristic length scale is chosen to be the step height h. In this case, the size of the
computational box is given by Lx=6	h; Ly=3	h=2 and Lz=2h, and the Reynolds number
is Re=Umh=�=27600.
A set of 48× 48× 62 discretization grid points is used and the mesh is re�ned in the z-

direction near the walls, in the centre of the channel at the step level and in the x-direction,
near the inlet section (see Appendix C).

4.3.1. Boundary conditions. Owing to the turbulent nature of the �ow, the boundary condi-
tions have to be designed carefully, especially in the out�ow section, to allow the �ow and
its convected eddies to go through.
At the walls, we use no-slip conditions for the three velocity components:

ui;Nz =(−6ui;Nz−1 + ui;Nz−2)=3 and ui;1 = (−6ui;2 + ui;3)=3 (41)

In spite of its simplicity and known limitations, model (39) can be used down to the wall
allowing a complete calculation of the viscous sublayers using strong re�nement of the mesh
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near the wall. This practice avoids the use of the logarithmic law of the wall which can be
questionable [23].
At the in�ow plane, the �ow is assumed to be fully turbulent and each velocity component

has to be speci�ed at each time step. Thus, the data are provided by a previous turbulent
channel �ow simulation [1] for which the velocity components have been stored over 2000
time steps.

4.3.2. Frozen structures. Fixed pressure, along with @v=@x= @w=@x=0 is not an appropriate
exit boundary condition because the eddies are caused to collapse. The ‘frozen turbulence’
approximation produces an e�cient solution of the problem. The turbulence signal is then split
into a mean component (with respect to the spanwise direction) and a �uctuating component
for each �ow variable f= 〈f〉+f#. Two di�erent types of conditions are used. For the mean
part of velocities we use the following exit boundary conditions:
@〈w〉Y =@x= @〈v〉Y =@x=0 and �xed pressure correction 〈	〉Y =0 and the mean streamwise

velocity component is extrapolated via the continuity condition:

(〈u〉Y )Nx−1+(1=2); k =�X
[
−23 gz(k); k

gx(i); Nx−1

(
@〈w〉Y
@Z

)
Nx−1; k

+
(
@〈u〉Y
@X

)
Nx; k

]

+26(〈u〉Y )Nx−2+(1=2); k − (〈u〉Y )Nx−3+(1=2); k (42)

The �uctuating part of velocities, denoted by the superscript (#), are given by the convective
conditions:
@U#=@t + Uc · ∇U# = 0 with Uc = (Uc; 0; 0); Uc being a convection velocity. Actually, we

take Uc = (〈u〉Y )Nx−1; k . These relations give the explicit �uctuations:

u#n+1Nx−1+1=2; j; k =
�tUc
�x

u#nNx−2+1=2; j; k +
[
1− �tUc

�x

]
u#nNx−1+1=2; j; k

v#n+1Nx; j; k =
�tUc
�x

v#nNx−1; j; k +
[
1− �tUc

�x

]
v#nNx; j; k

w#n+1Nx; j; k =
�tUc
�x

w#nNx−1; j; k +
[
1− �tUc

�x

]
w#nNx; j; k

(43)

the corresponding condition for pressure correction is the homogeneous Neumann condition:
@	#=@x=0.
Practically, the splitting is obviously realized by the Fourier transform in the y direction

by distinguishing the zero k-mode (corresponding to 〈f〉) from the non-zero k-modes (corre-
sponding to f#).
Another possible technique does not use splitting and assumes that the whole components

are given by the convective relations:

@U
@t
+Uc:∇U =0 with Uc = (Uc; 0; 0) (44)

The suitable condition for pressure correction is again an homogeneous Neumann condition in
all the out�ow plane. In this case, the streamwise component of velocity has to be renormalized
with the given �ow rate in order to ful�l the compatibility condition.
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(a)

(b)

Figure 13. Friction factor and pressure coe�cient at the lower wall in the backward facing step �ow.
(a) Friction factor: ——— Hermitian schemes; centred second-order di�erences; ©: numerical
predictions of Le and Moin (1994) [19]; : Jovic experiment [28] (Reh=10 400); �: Jovic experiment
(Reh=25 500); �: numerical predictions Le and Moin (1994), Reh=500, step in a channel. (b) Pres-
sure coe�cient: ——— Hermitian schemes; centred second-order di�erences; ©: numerical
predictions of Le and Moin (1994); : Adams et al. [27] experiment, Reh=26 000; �: Driver et al.
(1985) [32] experiment, Reh=36 500; �: Chandrsuda and Bradshaw [25] experiment, Reh=100 000.

In the present case, these two types of exit boundary conditions give almost the same
results.

4.3.3. Results. An important feature of the �ow is given by the friction factor and by the
pressure coe�cient evolution along the wall. These are given in Figures 13 and 14 for the
lower wall and the upper wall. A good agreement is found with various experimental and
numerical data of the literature [25–28, 19]. Figure 15 shows the development of the Reynolds
stress pro�les downstream the step. The levels of energy are increasing in the mixing zone
downstream the step angle and remain maximum before reattachment. After reattachment,
the energy decreases and some local peaks appears near the walls relaxing toward a plane
channel �ow. Some minor di�erences are visible between the Hermitian solution and the
centred di�erence solution.
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(a)

(b)

Figure 14. Friction factor and pressure coe�cient at the upper wall in the back-
ward facing step �ow. (a) Friction factor: ———- Hermitian schemes;
centred second-order di�erences. (b) Pressure coe�cient: ———- Hermitian
schemes; centred second-order di�erences; ©: numerical predictions
of Le and Moin (1994) [19]; : Driver et al. (1985) [32] experiment, Reh=

36 500; : Eaton et al. (1980) [27] experiment, Reh=38 000.

4.4. Boundary layer over a backward facing step �ow

We consider the turbulent �ow in an open boundary layer with a small step height. In this case,
the size of the computational box is given by Lx=20H; Ly=3	H=2 and Lz=5H . Velocities
are one-dimensioned with the maximum velocity Um in the in�ow section and length scales
with the step height H . The Reynolds number is ReH =UmH=�=13800.
Two calculations have been carried out with a grid composed of 48×48×62 discretization

nodes using centred second-order di�erences (case A) or Hermitian schemes (case B). A
third calculation (case C) based on Hermitian schemes uses a grid composed of 96× 64× 62
discretization nodes. In all the cases, the mesh is re�ned near the walls, in the centre of the
channel and near the inlet section.

4.4.1. Boundary conditions. In the in�ow plane, the boundary conditions are obtained by the
superposition of an analytical turbulent boundary layer mean pro�le (two dimensional) and
a �uctuating �eld given by a previous simulation in a plane channel. These superimposed
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(a)

(b)

(c)

(d)

Figure 15. Turbulence intensities pro�les and Reynolds shear stress pro�les in the turbulent backward
facing step �ow. ——— Hermitian schemes; centred second-order di�erences.

�uctuations are modulated by a sine function in order to get a zero level of turbulence at the
external boundary. The boundary layer thickness is taken equal to the step height.
At the upper boundary, we use the following conditions:

ui;Nz = (−6ui;Nz−1 + ui;Nz−2 + 8Uext)=3 and ui;1 = (−6�i;2 + ui;3)=3
wi;Nz =wi;Nz−1 and p=constant

(45)

At the lower wall boundary and on the vertical wall, no-slip boundary conditions are used.
For the out�ow plane, the frozen structures boundary conditions are imposed.
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(a)

(b)

Figure 16. Streamlines and pressure contours in the turbulent backward facing step �ow in a boundary
layer for Reh=13 800. (a) Streamlines and (b) pressure contours.

Figure 17. Friction factor at the wall in the turbulent backward facing step �ow in a boundary layer.
case A; case B; ——– case C. ©, Numerical simulation Le and Moin (1994) [19]; ,

Jovic experiment [28] (Reh=10 400); �, Jovic experiment (Reh=25 500).

4.4.2. Results. Streamlines and isopressure contours reported in Figure 16 exhibit the char-
acteristic structure of the step �ow. The important characteristic given by the evolution of
friction factor along the wall is displayed in Figure 17 and compared to various experimental
and numerical data. These curves allow to de�ne the di�erent zones of the �ow: two recir-
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Table II. Turbulent �ow past a backward facing step in a boundary layer.

Case xr1=h xr2=h

A 1.76 5.45
B 1.92 5.64
C 1.70 5.40

culation zones exist, the �rst one which is very short, is located just down the step where
Cf is positive, the second one is the main recirculation zone in which Cf is negative. In the
next zone with again a positive friction factor, the boundary layer �ow is recovering. These
zones are de�ned in Table II. The values seem to be slightly below the experimental data
and numerical data. Cases B and C give almost similar results but case C gives lower values
that appears closer to [28] measurements, and thus probably more realistic. However, the
case A gives a bad location for the minimum of friction factor. Discrepancies found further
downstream, may probably be explained by Reynolds number e�ects. Besides, the relative low
values of reattachment lengths can be due to a numerical e�ect found by Le et al. [19] who
remarked that when the upstream section before the step is not calculated, the reattachment
length is reduced. Figures 18 and 19 present the evolution of turbulent stress pro�les down-
stream the step. The general behaviour of the turbulent �eld is found to be in agreement with
the numerical simulation of Le et al. [29]. Cases B and C give similar results with turbulent
levels that are somewhat lower than these found in case A. The di�erence between the results
obtained using Hermitian schemes and the results obtained using the second order central
di�erences is also visible in the case of the step in a channel. Indeed, the velocity variances
are also a�ected by the e�ect of Reynolds number, but the u-component for instance clearly
exhibits a major peak corresponding to the shear layer and a secondary peak very near the
wall, probably linked to reverse �ow where large eddies impinge the wall surface.
As an illustration, a low instantaneous isopressure surface is displayed on the perspective

view of Figure 20, showing that the present numerical method can be used for insights into
the structural details of the �ow. However, the pressure �eld is not always a good marker
of structures and it is doubtful that long spanwise quasi-bidimensional rolls correspond to the
real shape of vortical eddies.

5. CONCLUDING REMARKS

The proposed method proved to give a practical and precise solution of the unsteady three-
dimensional Navier–Stokes equations. This method that retains the �exibility of the �nite
di�erences schemes while giving high-order accuracy, usually a property of spectral meth-
ods, appears attractive to perform direct numerical simulations and large eddy simulations
of turbulent �ows. The original feature of the method is the use of an iterative solution of
pressure–velocity coupling that preserves fourth-order accuracy on pressure while solving only
a second-order pressure correction equation. The use of the skew-symmetric form is also an
important ingredient that guaranties energy conservation properties, even on staggered grids.
An important ingredient of the method is the diagonalization technique that presents decisive
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(a)

(b)

Figure 18. Turbulence intensities pro�les in the turbulent backward facing step �ow in a boundary
layer. (a) Longitudinal component and (b) spanwise component , case A; , case B; ——–,

case C; ©, numerical simulation of Le and Moin (1994) [19].

advantages compared to usual iterative solutions. Indeed, the test applications to the turbu-
lent �ow after a backward facing step in a channel or in a boundary layer, produce a good
description of the basic features of these �ows compared to available data of the literature.
Considering the high accuracy permitted by the proposed method, combined with simplicity

and e�ectiveness of the algorithm, it can be particularly useful for DNS or for instability
growth applications [30]. These are the real potentials of the method. Useful applications
of the method can be also related to laminar-turbulent transition for which high accuracy is
essential. But indeed, in the case of LES of fully turbulent �ows the advantages of fourth-order
schemes over the second-order schemes appeared to be moderate. They are mainly noticeable
on sensitive quantities such as the reattachment length for example, in the present application.
Then, the second-order scheme would be generally su�cient for engineering applications (see
Reference [31]).
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(a)

(b)

Figure 19. Turbulence intensities pro�les and turbulent shear stress pro�les in the turbulent backward
facing step �ow in a boundary layer. (a) Vertical component and (b) shear stress. , case A;

, case B; ——–, case C; ©, numerical simulation of Le and Moin (1994) [19].

APPENDIX A: DISCRETIZATION FORMULA

A.1. First-order Hermitian derivatives

The derivatives with respect to � (which denotes X or Z) of a function f de�ned at nodes
j − 1; j; j + 1 are given on non-staggered grids by the following implicit relations [5]:

��

((
@f
@�

)
j−1
+ 4

(
@f
@�

)
j
+
(
@f
@�

)
j+1

)
=3(fj+1 − fj−1) (A1)

at interior grid points.
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Figure 20. Isosurfaces at constant low pressure level (p=�U 2
0 = − 10−2)

in a perspective instantaneous view.

At the boundaries we use the third-order accurate relations:

2��
(
2
(
@f
@�

)
2
+
(
@f
@�

)
1

)
=f3 + 4f2 − 5f1

2��

(
2
(
@f
@�

)
N−1

+
(
@f
@�

)
N

)
=−fN−2 − 4fN−1 + 5fN

(A2)

Since �ow variables are located at di�erent nodes, one requires to use �rst-order derivatives
at staggered grid nodes as well as interpolation operators. These derivatives are provided by
the implicit fourth-order accurate relations deduced from Taylor expansions:

��

((
@f
@�

)
j−1
+ 22

(
@f
@�

)
j
+
(
@f
@�

)
j+1

)
=24(fj+1=2 − fj−1+1=2) (A3)

at interior grid points, and

��
(
23
(
@f
@�

)
2
+
(
@f
@�

)
1

)
=−f7=2 + 26f5=2 − 25f3=2

�f

(
23
(
@f
@�

)
N−1

+
(
@f
@�

)
N

)
=fN−3+1=2 − 26fN−2+1=2 + 25fN−1+1=2

(A4)

at the boundaries (third-order accuracy).
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These equations lead to tridiagonal systems which are solved using the Thomas algorithm.
The relations for barycentric interpolation which are also fourth-order accurate are given

by

fj+1=2 = (9fj−1 + 9fj − fj+1 − fj+2)=16 (A5)

and the third-order boundary relations:

f3=2 = (6f1 + 12f2 − 2f3)=16
fN−1+1=2 = (6fN−1 + 12fN−2 − 2fN−3)=16

(A6)

at the boundaries.

A.2. Second-order Hermitian derivatives

Second-order derivatives, evaluated on non-staggered grid nodes, are given by

@2f
@�2

= �2�� + ��

(
f;
@f
@�

)
where ��

(
f;
@f
@�

)
= − ��

(
@f
@�

)
+ �2��f (A7)

The symbols �� and �2�� represent the classical centred di�erence operators:

(��f)j=
fj+1 − fj−1
2��

and (�2��f)j=
fj−1 − 2fj + fj+1

(��)2
(A8)

A.3. Discretization of convective terms

Convective terms like u@u=@x in the u momentum equation will be computed by an interpola-
tion on non-staggered nodes (i; j; k), followed by a derivative on staggered nodes (i+1=2; j; k):(

u
@u
@x

)
i+1=2; j; k

= ui+1=2; j; k

(
@ui; j; k
@x

)
i+1=2; j; k

(A9)

APPENDIX B: MODIFICATIONS IN THE DISCRETIZATION OF THE
POISSON EQUATION

Condition (21) has to be preserved exactly by the numerical scheme:

Nx−1; Ny;Nz−1∑
i; j; k

1
�t
(D:U )i; j; k =

Nx−1; Ny;Nz−1∑
i; j; k

(�2	)i; j; k (B1)

Using 	1; k =	2; k ;	Nx; k =	Nx−1; k and 	i;1 =	i;2;	i; Nz=	i; Nz−1 as approximations of (22),
the right-hand side of Equation (22) cancels. With the periodicity assumption in the spanwise
direction, the problem is then to ensure:

Ny;Nz−1∑
j; k

(
Nx−1∑
i

(
@u
@x

)
i

)
j; k

+
Ny;Nx−1∑
i; j

(
Nz−1∑
k

(
@w
@z

)
k

)
i; j

=0
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Such is not exactly the case with the Hermitian relations (Appendix A) and the solution for
this problem is to use the weighting coe�cients �i and k , as follows:

Nx−1∑
i
�i

(
Ny;Nz−1∑
j; k

(
@u
@x

)
j; k

)
+
Nz−1∑
k
k

(
Ny;Nx−1∑
i; j

(
@w
@z

)
i; j

)
i; j

=0

With this new integration formula, the discrete laplacian operator has to be replaced by

(Axx + Azz + d2y) such that(Axxf)i=
1
�i
(�2xxf)i and (Azzf)k =

1
k
(�2zzf)k

to ensure that r.h.s. of Equation (22) still cancels identically.
From the �rst derivatives relations on staggered nodes, the coe�cients �i and k can be

easily deduced:

�i=1 for i=5; : : : ; Nx − 4 and k =1 for k=5; : : : ; Nz − 4

�2 =2 = �Nx−1 =Nz−1 = 13=12; �3 =3 = �Nx−2 =Nz−2 = 7=8

and

�4 =4 = �Nx−3 =Nz−3 = 25=24 (B2)

APPENDIX C: VARIABLE MESHES

Variables meshes are introduced through variable changes in the x and z directions in order
to take into account the steep gradients near the wall and also near the inlet of the channel.
In the z direction, a classical hyperbolic tangent is used:

z=
1
az
tanh (z arg tanh (az)) (C1)

The variable change in the x-direction is analogous and allows to tighten the mesh near the
inlet:

x=Lx
1
ax
th
(
X
Lx
arg th (ax)

)
(C2)

When the a-parameters are taken very small, a uniform grid distribution is recovered.
Then,

gx =
ax

arg tanh (ax)
ch2
(
X
Lx
arg tanh (ax)

)

hx =
2a2x

Lx arg tanh (ax)
sh
(
X
Lx
arg tanh (ax)

)
ch3
(
X
Lx
arg tanh (ax)

)
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gz =
az

arg tanh (az)
ch2(Z arg tanh (az))

hz =
2a2z

arg tanh (az)
sh(Z arg tanh (az)) ch3(Z arg tanh (az))

In the case of the step �ow the variable change is:

z= h
tanh(azl(Z − Zl)) + tanh(azlZl)
tanh(azl(�− Zl)) + tanh(azlZl) for 06 Z 6 �

z= A2 tanh(az2(Z − Z2)) + B2 for �6 Z 6 Lz

x=
Lx
ax
tanh

(
arg tanh(ax)

X
Lx

)

For the present application, we have used for the step in a channel in the laminar case:

Z1 =Z2 = �; az1 = az2 = 2:82 and ax=0:93

whereas A2 and B2 are chosen in order to enforce continuity in z and its �rst derivatives at
�.
For the step in a channel in the turbulent case:

Z1 = 0:675; Z2 = 2�− Z1; �=1

For the turbulent step �ow in a boundary layer:

�=2; Z1 = 1:25; Z2 =Lz1; az1 = 1:5; az2 = 0:574

APPENDIX D: FOURIER PSEUDO-SPECTRAL TREATMENT IN THE
SPANWISE DIRECTION

Derivatives and interpolations in the spanwise direction are based on Fourier expansions. The
mesh is still staggered, using normal nodes for pressure and shifted grids for velocity:

yj = j�Y = jLy=Ny (D1)

yj+1=2 = (j + 1=2)�Y = jLy=Ny (D2)

for j=0; 1; : : : ; Ny.
The wavenumbers are de�ned by

kj= j�ky=2	j=Ly (D3)
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The couple of direct and inverse discrete Fourier transform are chosen in the following form:

f̂(kp) =
1
Ny

Ny−1∑
j=0

f(xj) exp(−ikpxj)

f(xj) =
Ny=2−1∑
p=−Ny=2

f̂(kp) exp(ikpxj)

(D4)

Thus, derivatives on normal and shifted nodes are given by

@f
@y
(yj)=

Ny=2−1∑
p=−Ny=2

ikpf̂(kp) exp(ikpyj)

and

@f
@y

(
yj +

�y
2

)
=

Ny=2−1∑
p=−Ny=2

ikpf̂(kp) exp
[
ikp

(
yj +

�y
2

)]
(D5)

with similar relations for second-order derivatives and for interpolations.
Also, noting the incomplete information on the Ny=2+1 Fourier mode, it will be forced to

zero in the calculations:

f̂(Ny=2 + 1)=0 (D6)
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